Application of Chebyshev II–Bernstein basis transformations to degree reduction of Bézier curves
نویسندگان
چکیده
منابع مشابه
A simple matrix form for degree reduction of Bézier curves using Chebyshev-Bernstein basis transformations
We use the matrices of transformations between Chebyshev and Bernstein basis and the matrices of degree elevation and reduction of Chebyshev polynomials to present a simple and efficient method for r times degree elevation and optimal r times degree reduction of Bézier curves with respect to the weighted L2-norm for the interval [0,1], using the weight function wðxÞ 1⁄4 1= ffiffiffiffiffiffiffi...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملDegree reduction of composite Bézier curves
This paper deals with the problem of multi-degree reduction of a composite Bézier curve with the parametric continuity constraints at the endpoints of the segments. We present a novel method which is based on the idea of using constrained dual Bernstein polynomials to compute the control points of the reduced composite curve. In contrast to other methods, ours minimizes the L2-error for the who...
متن کاملDegree reduction of disk rational Bézier curves
This paper presents an algorithm for optimal multi-degree reduction of rational disk Bézier curve in the L norm. We start by introducing a novel disk rational Bézier based on parallel projection, whose properties are also discussed. Then we transform multi-degree reduction of the error radius curve and the weight curve of the disk rational Bézier curve into solving a constrained quadratic progr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2008
ISSN: 0377-0427
DOI: 10.1016/j.cam.2007.10.032